Profile icon
David Burton
Data Scientist
Home
Interactive Dashboards
Data Science & ML
Engineering & Automation
Research & Writing
Back to Data Science

Atlas Trading System

September 29, 2025 📊 Data Science
Technologies & Tools
Python
NumPy
Pandas
Asyncio
Scikit-learn
XGBoost
TensorFlow
Docker
Redis

Atlas Trading System

Overview

Production algorithmic trading system managing real capital. Implements machine learning ensemble models for market prediction and automated trade execution.

Technical Architecture

System Design

  • Event-driven architecture with real-time data processing
  • Microservices approach for scalability and fault isolation
  • Message queue system for component communication
  • Redundant data feeds with automatic failover

Core Components

┌─────────────────────────────────────────────┐
│           Market Data Layer                 │
│     Real-time L2 • Options • Indices        │
└─────────────┬───────────────────────────────┘
              │
┌─────────────▼───────────────────────────────┐
│         Feature Engineering                 │
│     20+ calculated features per tick        │
│     Multi-timeframe analysis                │
└─────────────┬───────────────────────────────┘
              │
┌─────────────▼───────────────────────────────┐
│          ML Models Ensemble                 │
│   Multiple models with weighted voting      │
└─────────────┬───────────────────────────────┘
              │
┌─────────────▼───────────────────────────────┐
│         Risk Management Layer               │
│   Position limits • Real-time monitoring    │
└─────────────────────────────────────────────┘

Technical Implementation

Data Pipeline

  • Ingestion Rate: Processing thousands of market events per second
  • Latency: Sub-millisecond feature calculation
  • Storage: Time-series optimized database with compression
  • Reliability: 99.5% uptime with automatic recovery

Machine Learning Stack

Ensemble Approach:

  • Multiple models trained on different timeframes
  • Adaptive weighting based on recent performance
  • Cross-validation with walk-forward analysis
  • Feature importance tracking and selection

Training Pipeline:

# Example: Feature engineering approach
class FeatureEngineer:
    def __init__(self):
        self.feature_window = 100
        self.features = []
        
    def calculate_microstructure_features(self, market_data):
        """
        Calculate market microstructure indicators
        """
        features = {
            'bid_ask_spread': self.calculate_spread(market_data),
            'order_imbalance': self.calculate_imbalance(market_data),
            'price_impact': self.estimate_impact(market_data),
            'volume_profile': self.analyze_volume(market_data)
        }
        return features

Risk Management

Position Controls:

  • Dynamic position sizing based on volatility
  • Maximum drawdown limits
  • Correlation-based portfolio constraints
  • Real-time P&L tracking and alerts

Safety Features:

  • Automated circuit breakers
  • Order validation pipeline
  • Market hour restrictions
  • Emergency position flattening

Technical Achievements

Performance Metrics

  • Data Processing: 2.48 million data points for training
  • Model Training: Multiple algorithms with ensemble voting
  • Prediction Accuracy: Validated through backtesting
  • System Reliability: Fault-tolerant with automatic recovery

Engineering Challenges Solved

  1. Market Data Handling

    • Solved API rate limiting with intelligent rotation
    • Implemented efficient data compression for storage
    • Built redundant data pipeline for reliability
  2. Feature Engineering

    • Developed custom market microstructure indicators
    • Created multi-timeframe feature aggregation
    • Implemented real-time feature calculation
  3. Model Deployment

    • Containerized deployment for consistency
    • A/B testing framework for model updates
    • Monitoring and alerting infrastructure

Technology Stack

Languages & Frameworks:

  • Python 3.11 (core system)
  • NumPy/Pandas (data processing)
  • Asyncio (concurrent processing)

Machine Learning:

  • Scikit-learn (preprocessing)
  • XGBoost (gradient boosting)
  • TensorFlow (deep learning)
  • Custom ensemble framework

Infrastructure:

  • Docker (containerization)
  • Redis (caching layer)
  • Time-series database
  • Cloud storage for backups

Monitoring:

  • Custom dashboards
  • Performance metrics tracking
  • Automated alerting system

Development Practices

Code Quality

  • Comprehensive test coverage
  • Type hints throughout codebase
  • Automated code review tools
  • Performance profiling

DevOps

  • CI/CD pipeline
  • Automated testing
  • Rolling deployments
  • Version control for models

Results

  • System Status: Production deployment with real capital
  • Uptime: 99.5% availability
  • Data Scale: Millions of market events processed
  • Architecture: Scalable microservices design

Specific client details and proprietary algorithms have been omitted.